Photochemical Reduction and Oxidation Reactions on Barium Titanate Surfaces

نویسندگان

  • Jennifer L. Giocondi
  • Gregory S. Rohrer
چکیده

The influence of the ferroelectric domain structure of BaTiO3 on the photochemical reactions that occur on its surface has been examined using atomic force microscopy. Both the photochemical reduction of aqueous silver cations and the oxidation of steric acid thin films were studied. During reduction, silver selectively deposits on the surface in patterns determined by the ferroelectric domain structure. Based on the analysis of domain polarization in single crystals, we find that the photochemical reduction reaction occurs preferentially on the positive ends of the dipoles. The most likely explanation for this phenomenon is that when the static dipolar field is oriented with the positive end of the dipole on the surface, photogenerated electrons are driven to the solid-liquid interface where they reduce metal cations. The oxidation of steric acid films, on the other hand, is not spatially selective. During oxidation, the films dissipate uniformly as they are converted to CO2 and H2O. In this case, we conclude that the oxidation occurs indirectly. Photogenerated holes create hydroxyl radicals which can migrate on the surface before reacting with the steric acid molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure Sensitivity of Photochemical Oxidation and Reduction Reactions on SrTiO3 Surfaces

The photochemical reduction of Ag and oxidation of Pb from aqueous solution by SrTiO3 leave insoluble reaction products (silver and PbO2, respectively) on the surface. Microscopic analysis has been used to relate the rates of these two reactions to the structure and orientation of SrTiO3 surfaces. The nonpolar (100) surface is the most reactive for silver reduction and the composition of the te...

متن کامل

All Roads Lead to TiO2: TiO2‐Rich Surfaces of Barium and Strontium Titanate Prepared by Hydrothermal Synthesis

Through high-resolution electron microscopy, the surface structure of barium titanate and strontium titanate nanoparticles are found to be terminated by a TiO2 double layer. These results confirm prior observations of TiO2-rich surface reconstructions on strontium titanate nanoparticles made hydrothermally at high pH and single crystals prepared with wet chemical etching. Of all the reconstruct...

متن کامل

Effect of re-oxidation firing on PTCR properties of Sm-doped barium titanate ceramics

The effect of reduction and re-oxidation firing on the PTCR properties of Sm-doped barium titanate ceramics was investigated for the application in multilayered PTC thermistors. The lattice parameters a, and c decreases monotonically with increasing oxygen concentration in the re-oxidation atmosphere, which seems to be related with an electrostatic Coulomb interaction between an oxygen vacancy ...

متن کامل

Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas

In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of et...

متن کامل

Photochemical growth of silver nanoparticles on c(-) and c(+) domains on lead zirconate titanate thin films.

The photochemical growth of silver nanoparticles on the negative domains of lead zirconate titanate thin films is reported. A sample of highly [100] orientated lead zirconate titanate, with a ratio of 30:70, that was 65-70 nm thick grown on Pt-coated MgO was poled by use of piezoresponse force microscopy to produce defined regions of surface positive and negative polarization. A comparison betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000